SEAFDECINSTITUTIONAL REPOSITORY
    • English
    • ไทย
    • 日本語
    • Bahasa Indonesia
  • English 
    • English
    • ไทย
    • 日本語
    • Bahasa Indonesia
  • Login
View Item 
  •   SEAFDEC Institutional Repository (SIR)
  • 03 SEAFDEC External Publications
  • Journal Articles, Conference Papers and Book Chapters by SEAFDEC Staff
  • Journal Articles
  • AQD
  • View Item
  •   SEAFDEC Institutional Repository (SIR)
  • 03 SEAFDEC External Publications
  • Journal Articles, Conference Papers and Book Chapters by SEAFDEC Staff
  • Journal Articles
  • AQD
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Dietary P regulates phosphate transporter expression, phosphatase activity, and effluent P partitioning in trout culture

Thumbnail
View/Open
Request this document
Date
2003
Author
Coloso, R. M.
King, K.
Fletcher, J. W.
Weis, P.
Werner, A.
Ferraris, R. P.
Page views
25
Share 
 
Metadata
Show full item record

Cited times in Scopus



Abstract
Phosphate utilization by fish is an important issue because of its critical roles in fish growth and aquatic environmental pollution. High dietary phosphorus (P) levels typically decrease the efficiency of P utilization, thereby increasing the amount of P excreted as metabolic waste in effluents emanating from rainbow trout aquaculture. In mammals, vitamin D3 is a known regulator of P utilization but in fish, its regulatory role is unclear. Moreover, the effects of dietary P and vitamin D3 on expression of enzymatic and transport systems potentially involved in phosphate utilization are little known. We therefore monitored production of effluent P, levels of plasma vitamin D3 metabolites, as well as expression of phosphatases and the sodium phosphate cotransporter (NaPi2) in trout fed semipu diets that varied in dietary P and vitamin D3 levels. Mean soluble P concentrations varied markedly with dietary P but not with vitamin D3, and constituted 40–70% of total effluent P production by trout. Particulate P concentrations accounted for 25–50% of effluent P production, but did not vary with dietary P or vitamin D3. P in settleable wastes accounted for <10% of effluent P. The stronger effect of dietary P on effluent P levels is paralleled by its striking effects on phosphatases and NaPi2. The mRNA abundance of the intestinal and renal sodium phosphate transporters increased in fish fed low dietary P; vitamin D3 had no effect. Low-P diets reduced plasma phosphate concentrations. Intracellular phytase activity increased but brushborder alkaline phosphatase activity decreased in the intestine, pyloric caeca, and gills of trout fed diets containing low dietary P. Vitamin D3 had no effect on enzyme activities. Moreover, plasma concentrations of 25-hydroxyvitamin D3 and of 1,25-dihydroxyvitamin D3 were unaffected by dietary P and vitamin D3 levels. The major regulator of P metabolism, and ultimately of levels of P in the effluent from trout culture, is dietary P.
URI
http://hdl.handle.net/10862/1957
Suggested Citation
Coloso, R. M., King, K., Fletcher, J. W., Weis, P., Werner, A., & Ferraris, R. P. (2003). Dietary P regulates phosphate transporter expression, phosphatase activity, and effluent P partitioning in trout culture. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 173(6), 519-530.
Subject
Aquaculture effluents; Diets; Enzymatic activity; Excretory products; Feeding experiments; Phosphates; Phosphorus; Pollution control; Vitamin D; Nutrition; Fish; Phytase; Sodium-phosphate cotransporter
Collections
  • AQD [1108]

© SEAFDEC 2021
Contact Us | Send Feedback
 

 

Browse

All of SIRCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

View Usage Statistics
Related Links
SEAFDEC/TD IRSEAFDEC/AQD IRSEAFDEC/MFRDMD IRSEAFDEC/IFRDMD IR

© SEAFDEC 2021
Contact Us | Send Feedback