SALMONELLAE & SHIGELLA

LIM PANG YONG

INTRODUCTION

The presence in foods of any serotype of <u>Salmonella</u> is potentially dangerous as a source of human disease, either directly upon consumption of food, or indirectly through secondary contamination of utensils, processing equipment or processed foods. A further risk arises through induction of the carrier state in food-handlers.

I CULTURE MEDIA*

Nutrient broth

Selenite broth

Tetrathionate broth

Desoxycholate citrate agar (DCA)

Xylose lysine deoxycholate (XLD)

Triple sugar iron agar (TSI)

MacConkey agar (MCA)

GN broth

Salmonella anti-sera : Polyvalent "O" (somatic)

Polyvalent "H" specific and non-specific (flagellar)

II APPARATUS

'Waring' blender & flasks Autoclave
Pipettes Incubator

Scissors & forceps
Alcohol (70% v/v) swabs
Weighing balance
Plating loops
Laminar flow chamber

Inoculating needle Glass slides

Conical flasks or screw-cap jars, 250 ml Petri dish (90 x 15 mm)

III SAMPLING PROCEDURE

Refer to "AEROBIC PLATE COUNT" (E-2) Section III.

^{*} Refer to Appendix B for methods of media preparation.

IV PROCEDURE

A RESUSCITATION (PRE-ENRICHMENT)

1. Weigh 25 g of the above sample and put them into a 'Waring' blender flask and add approximately 225 ml of sterile nutrient broth. Homogenise for 1 min at low speed.

Also blend 50 g of above sample with 200 ml of GN broth for Shigella.

2. Incubate at 35°C for 24 hrs; for Shigella incubate at 35°C for 18 hrs.

B SELECTIVE ENRICHMENT

- 1. Mix the resuscitated culture gently and add 1 ml each to 10 ml of tetrathionate broth and 10 ml of selenite broth.
- 2. Incubate the selective enrichment broths at 35°C for 24 hrs.

C PLATING ON SELECTIVE AGAR MEDIA

- Each culture of enrichment medium is inoculated onto DCA and XLD agar plates. Inoculate
 the same for <u>Shigella</u> from GN broth culture (from Step A-2) on MCA, DCA and XLD
 agar plates.
- 2. Transfer a loopful of culture and streak to obtain isolated colonies.
- 3. Incubate at 35°C for 24 hrs.
- 4. Examine the plates for the presence of Salmonella & Shigella colonies.

For Salmonella:

- a) On XLD agar: appear as pink colonies with black centres of H₂S.
- b) on DCA agar: appear as colourless colonies.

For Shigella

- a) On XLD agar: appear as red or pink colour colonies, about 1 mm \emptyset .
- b) On DCA & MCA: appear as opague or transparent colonies.

D SCREENING AND BIOCHEMICAL TESTS

- Pick up a suspected colony with inoculating wire and inoculate the TSI agar slant by streaking the slant and stabbing the butt. Incubate at 35°C for 24 hrs.
- 2. Salmonella cultures typically produce an alkaline (red) slant and acid (yellow) butt, with or without production of H₂S (blackening of butt) in TSI agar. Shigella cultures typically produce red slant and yellow butt, with no H₂S or gas.
- 3. Purify TSI cultures by streaking onto MCA and incubate for 24 hrs at 35°C. Typical colonies appear transparent and colourless, sometimes with a dark centre.
- 4. Subculture <u>Salmonella</u> colony in nutrient broth and incubate at 35°C for 24 hrs. Screen typical <u>Shigella</u> cultures in urea agar and motility medium. <u>Shigella</u> is urease negative and non-motile.
- 5. Using the nutrient broth culture as inoculum perform the following biochemical tests:

Tests (Salmonella)	Results	Tests (Shigella)	Results
Lysine decarbonxylase	+	Glucose (gas)	_
Urease	_	VP	_
Dulcitol	+	MR	+
KCN	_	Indole	+/-
Malonate	_	Lysine	
Indole		Arginine	+\-
VP	_	Ornithine	+\-
MR	+	Citrate	_
Citrate	+\-	Mannitol	+\-
Lactose	_	Lactose	
Sucrose	_		

- 6. Incubate the tests for 24-28 hrs at 35°C.
- 7. Note that a large percentage of <u>Salmonella arizonae</u> strains are negative for dulcitol utilization; positive for malonate and lactose utilization.
- 8. Perform serological tests for cultures giving reactions typical of Salmonella & Shigella.

E SEROLOGICAL CONFIRMATION

- 1. Emulsify the culture in 2 drops of saline on a clean glass slide.
- 2. Add one loopful of polyvalent "O" antiserum to the first drop only. Use the second drop as a saline control.
- 3. Tilt the slide back and forth for 1 minute and examine for agglutination. A positive reaction is when there is agglutination in the test mixture but not in the saline control.
- 4. Repeat similarly with polyvalent "H" antiserum.
- 5. Salmonella isolates causes agglutination for both antisera.
- 6. Conduct the serology for Shigella from Step 1 to Step 3.

REFERENCE

Official Methods of Analysis, Association of Official Analytical Chemists, 14th Edition, 1984.

FLOW DIAGRAM OF EXAMINATION PROCEDURES FOR SALMONELLA

25 g sample + 225 ml nutrient broth (Pre-enrichment) 35°C/24 hrs Enrichment in a) Selenite broth (35°C/24 hrs) b) Tetrathionate broth (35°C/24 hrs) Steak onto a) Desoxycholate citrate agar (DCA) b) Xylose lysine deoxycholate (XLD) 35°C/24 hrs Typical colonies Streak onto TSI Confirmatory tests: Lysine decarboxylase Indole f) Urease VΡ g) **Dulcitol** MR h) Malonate Citrate i) j) Lactose Sucrose

Serology (Polyvalent "O" antiserum, "H" antiserum)

a)

b)

c)

d)

e)

KCN

FLOW DIAGRAM OF EXAMINATION PROCEDURES FOR SHIGELLA

