

Analysis and Estimation of Trace Metals in Seawater and Sediment in the South China Sea, Area IV: Vietnamese Waters

Prof. Dr. Trinh Xuan Gian

Institute of Chemistry, Vietnam National Center for Natural Science and Technology. Hoang Quoc Viet Road, Caugiay District, Hanoi, Vietnam

ABSTRACT

Water samples from off shore of Vietnam from latitude 6°N to 21°N and longitude 103°C to 112°E were collected on 30 April 1999 to 29 May 1999 and analyzed for copper (Cu), lead (Pb), cadmium (Cd), zinc (Zn), nickel (Ni), chromium (Cr), arsenic (As) and mercury (Hg). The concentration of metals Cu, Pb, Cd, Zn, Ni and Cr was measure using flameless atomic absorption spectroscopy. The total concentration of all eight metals was in concentration ranges of unpolluted coastal water. The results indicated that the concentration of metals in bottom layer higher than in surface layer. Also, trace metal contents in the surface sediment were studied in off shore of Vietnam during this cruise. Total metals content were measured. The range of concentration of metals were 10.3 - 71.0 mg.g⁻¹ for Cu, 12.9 - 33.7 mg.g⁻¹ for Pb, 1.29 - 18.72 mg.g⁻¹ for Cd, 45.8 - 164.8 mg.g⁻¹ for Zn, 21.2 - 93.6 mg.g⁻¹ for Cr, 5.7 - 45.8 mg.g⁻¹ for Ni, 1.64 - 3.80 mg.g⁻¹ for As, and 0.104 - 0.493 mg.g⁻¹ for Hg. The levels found in the present study are similar to data from other marine.

Key words: Trace metals, Seawater, Surface sediment, South China Sea, Off shore of Vietnam

Introduction

Aquatic systems such as the seawater, inland water etc. are important stages in the biogeochemical cycle. Although dissolved levels are usually in the trace range of 10^{-6} - 10^{-9} Ml⁻¹ they remain significant, because they entry into the food chain and interactions with suspended particulate and sediments largely occur via the dissolve state.

The various heavy metals as Cd, Ni, As, Hg, etc. in seawater become toxic if present in excessive quantities and pose a potential threat to the ecosystem. Therefore, there has been constant effort to measure the impact of these metals on fauna [De Silva].

In environmental research and protection toxic metal, particularly Cd, Pb, Hg, As, Ni, Cr, etc. are becoming increasingly signification owing their biological nondergradability and chromic toxicity resulting from their accumulation in vital organs of man. As part of the SEAFDEC Cooperative Program in the Study of Fisheries Oceanography of the South China Sea, a Research on trace heavy metals in seawater was made.

The first analyses of seawater were performed just prior the beginning to the 19th century in laboratories. However, problems arising from changes in chemical composition through evanosation, biological activity, or chemical interactions with the containing vessel, forced the marine chemist to transfer his laboratory from land to ships. Herman Walterberg, the chemist on the famous "Meteor Expedition" in 1925, pioneered this change. Today, there is a strong and necessary trend toward instrumental techniques, as opposed to the classical methods, especially when assaying very small amounts of materials.

General comparative considerations suggest atomic absorption spectroscopy and modern voltametric methods, particularly differential pulse stripping voltammetry with high sensitivity, precision, and accuracy also a simple sample preparation and treatment to be the most promising chose for the determination and characterization of toxic heavy metal traces in seawater.

Material and Methods

Analytical methods

The concentrations of metals: Cu, Pb, Cd, Zn, Ni, Cr, As and Hg in Vietnamese waters were studied in the SEAFDEC interdepartmental collaborative research survey. The samples were analyzed in laboratory of the Department for Analytical Science and Technique of the Institute of Chemistry, National Center for Natural Science and Technology of Vietnam, NCST.

All bottles, filter membranes and lab wares that would be contact with samples were carefully pre-washed by 10% suprapure HNO_3 acid and Mili-Q water. Merck standard solutions diluted by Mili-Q water was use as standard.

The concentrations of metals Cu, Pb, Cd, Zn, Cr, Ni were measured using graphite furnace atomic absorption spectrometer PE AAS 3300, USA and As by using hydride AAS technique with MHS-10, Hg by using coldvapour method with MHS-10, and 746 VA Trace Analyzer Metrohm, Switzerland. Polyethylene containers, which have been previously cleaned with nitric acid then rinse with water, shall be used for sampling.

Sampling

 $Fifty-eight stations from offshore of Vietnam from latitude 6^{\circ}N \ to 21^{\circ}N \ and \ longitude 103^{\circ}E \ to 112^{\circ}E \ were \ established in this study (Fig.1)$

Fig. 1. Oceanographic Survey Station.

MV SEAFDEC collected the water samples on 30 April 1999 to 29 May 1999. The water was collected at each station during cruise at least two depth (surface and bottom) by water sampler attached to a rosette system. The water samples were transferred into acidic washed PE bottles and acidified to pH 1 with suprapure nitric acid for determination of Cu, Pb, Cd, Zn, Ni, Cr and As and with 1ml 10% $K_2Cr_2O_7$ solution to 1 liter for determination of Hg. Glass or other inert materials should be used if there is a risk of interaction of the sample with the container.

Determination of Cu, Pb, Cd, Zn, Ni and Cr

This method describes the determination of soluble copper, lead, cadmium, zinc, chromium and nickel in seawater and other saline waters by the simultaneous extraction of their complexes with ammonium pyrirolidine dithiocarbanate in to methyl isobutyl ketone and by the atomic absorption spectrophotometer with the graphite tube technique. Place 750ml aliquot of the sample, acidified seawater and each of the calibration solutions into series of 1 liter separating funnels fitted with polytetrafluoroethylene (PTFE) taps.

Add 35 ml of MIBK followed by 7ml of 1% APDC. Shake vigorously for 30 min. separate the organic layer in a polypropylene bottle and store for analysis. Allow the mixture to settle for at least 1h away from light or heat in the stoppered funnel. The settling time shall be strictly the same for all the solutions. Collect the organic layer taking care to avoid any trace of the aqueous phase (centrifuge if necessary) carry out a blank test in parallel with the determination by the same procedure, using the same quantities of all the reagents as in the sampling and chelation and extraction, but replacing the test portion by water.

Proceed as follows for each metal being determined. Before carrying out the spectrometric measurement, set up spectrometer according to the manufacturer's instructions by aspirating the organic extract of calibration solution of the metal being determined and using information in Table1.

Optimize the aspiration and conditions. Adjust the response of the instrument to zero absorbance with MIBK. For each metal being determined, aspirate the set of organic extracts of the calibration solutions. Plot a graph having the metal contents, in micrograms per liter, of the calibration solutions as abscissas and the corresponding values of absorbance as ordinates for example by measuring the absorbance of a calibration solution every five samples. Aspirate the organic extract of the test portion. Measure the absorbance of the metal being determined and after each measurement aspirate MIBK in order to rinse the nebulizer system.

Element to be determined	Wavelength (nm)
Nickel	232.0
Copper	324.7
Zinc	213.8
Cadmium	228.8
Chromium	357.9
	283.3
Lead	217.0

Table 1. Wavelength (nm) used to determine metal element.

Determination of Mercury

Mercury ions are reduced to metallic mercury by $NaBH_4$, entrancement of the mercury in a current of inert gas at ambient temperature and determination of the mercury, by flameless atomic absorption spectrometry at a wavelength of 253.7nm

Take a test portion of 100 ml from the previously mixed sample containing not more than 0.5 mg of mercury. Prepare, just before use, using the standard mercury solutions at least five calibration solutions, covering the range of concentrations which can be measured with the apparatus to be used.

Treat each of these solutions immediately after their preparation in exactly the same way as the test portion on which the determination is to carry out. Also, proceed in exactly the same way on a solution in which the standard mercury solution is replaced with water.

Set up the instrument in accordance with the manufacturer's introductions. Transfer a volume of sample solution into aeration flask in accordance with the manufacturer's introductions with on the entrainment gas supply and let the developed mercury vapour flow through the absorption cell and measure the absorption of atoms in the beam of the PE - AAS - 3300 by using of MHS - 10 carry out a blank test with each batch of samples, but replacing the test portion with water and using the same volume of reagents as for the determination prefer.

Determination of Arsenic

The method is based on the atomic absorption measurement of arsenic generated by the thermal decomposition of arsenic (III) hydride. As (III) is reduced to gaseous arsenic (III) hydride (AsH_3) by reaction with sodium tetrahydroborate in a hydrochloric acid medium.

The absorbance is determined at a wavelength of 193.7nm. Set all instrumental parameters of the atomic absorption spectrometer in accordance with the manufacturer's operating manual and optimize the position of the absorption cell in order to obtain maximum transmission of the light beam.

Pass a stream of argon through the system and set the instrument to zero. Measure the absorption given by the solutions in the following order:

- · Blank solution,
- · Calibration solutions,
- · Samples, prepared as follows,

Depending on the hydride system used, transfer an appropriate volume of the sample solution to the reaction vessel (MHS - 10). Connect the reaction vessel to the hydride system pass argon through the solution until the absorption signal of atomic absorption spectrometer returns to zero. For 20 ml of the sample solution add $5ml \pm 0.1ml$ of sodium tetrahydroborate solution to the solution and record the signal. Repeat the procedure using separate portions of each solution. Use the mean of these results. Establish the calibration curve using means of values obtained with the blank and calibration solutions.

Results and Discussion

Certified Reference Seawater Probe CASS-3 of the Institute for Environmental Chemistry, Canada, were included in sample preparation and analysis as quality control samples to ensure the **EARD** Southeast Asian Fisheries Development Center

accuracy of the results. The percentage recovery of copper was 102.5%, lead was 116.6%, cadmium was 116,6%, zinc was 108.9%, nickel was 104.1% and chromium was 109.8%. The result of analysis indicated good recoveries of all determined metals (Table 2).

	Cu	Pb	Cd	Zn	Ni	Cr
CASS-3	0.517	0.012	0.030	1.24	0.386	0.092
Our result	0.530	0.014	0.035	1.35	0.402	0.101

 Table 2. Analytical performance based on Reference Seawater. (µg/l).

The concentration of the determined metals in seawater of survey cruise at surface and bottom layer of sampling are presented in the Tables 3, 4, 5, 6, 7, 8, 9, and 10 in nM and Tables 11, 12, 13, 14, 15, 16, 17 and 18 in μ g/l

 Table 3.
 Cu-Concentration in seawater.

Station	Sam ples	C u (n M)	Station	Samples	C u (n M)	Station	Samples	C u (n M)
1	1 S	76.64	21	2 1 S	65.16	4.1	4 1 S	59.49
1	1 B	90.34	21	2 1 B	80.11	41	4 1 B	79.16
2	2 S	73.81		2 2 S	75.23	42	4 2 S	58.07
2	2 B	87.19	22	2 2 B	72.71	42	4 2 B	78.06
2	3 S	74.59		2 3 S	72.71	4.2	4 3 S	64.99
3	3 B	75.38	23	2 3 B	67.83	43	4 3 B	75.86
4	4 S	79.00	24	2 4 S	78.85	4.4	4 4 S	60.12
4	4 B	76.48	24	2 4 B	79.16	44	4 4 B	83.57
Ē	5 S	62.32	25	2 5 S	75.07	4.5	4 5 S	64.05
5	5 B	80.58	25	2 5 B	76.48	45	4 5 B	79.48
	6 S	67.99	24	26S	67.83	16	4 6 S	58.07
0	6 B	67.20	20	26B	80.58	40	4 6 B	78.22
-	7 S	65.78		27S	76.01	4.5	47S	60.91
7	7 B	67.83	27	2 7 B	78.06	47	47B	76.02
0	8 S	58.86	• •	2 8 S	72.71	10	4 8 S	64.99
8	8 B	74.59	28	2 8 B	79.16	48	4 8 B	58.54
0	9 S	60.43	2.0	2 9 S	75.07	10	4 9 S	67.04
9	9 B	67.04	29	29B	92.22	49	4 9 B	64.05
4.0	1 0 S	60.75		3 0 S	72.71	50	5 0 S	61.85
10	1 0 B	72.23	30	3 0 B	85.30		50B	81.52
	1 1 S	58.39		3 1 S	62.01		5 1 S	64.21
11	11B	72.55	31	31B	77.75	51	5 1 B	76.17
10	1 2 S	51.93		3 2 S	62.64		5 2 S	78.85
12	1 2 B	61.85	32	3 2 B	81.05	52	5 2 B	79.16
	1 3 S	67.04		3 3 S	67.99		5 3 S	60.12
13	1 3 B	72.71	33	3 3 B	75.86	53	5 3 B	73.81
	1 4 S	61.85		3 4 S	58.86		5 4 S	58.07
14	14B	75.70	34	3 4 B	74.91	54	54B	60.90
	1 5 S	64.84	35	3 5 S	64.84		5 5 S	64.99
15	1 5 B	80.58	35	3 5 B	66.26	55	5 5 B	80.74
	16S	60.43	24	36S	59.17		56B	63.74
16	16B	62.48	36	36B	61.06	56	56B	80.89
	17S	64.05		37S	67.83		57S	61.69
17	17B	74.13	37	37B	77.43	57	57B	78.37
10	1 8 S	59.17		38S	73.02	- 0	5 8 S	70.50
18	1 8 B	75.86	38 38B	58.86	58	58B	74.28	
4.0	19S	62.01		3 9 S	69.09	Natas	•	•
19	19B	74.91	39	39B	76.64	Note:		
	2 0 S	60.91		4 0 S	59.96	• S:Su	rface layer, 2	m
20 20B	76.80	40	4 0 B	80.58	• B: Bo	ttom layer, ≥	100m	

Station	Samples	Pb (nM)	Station	Samples	Pb (nM)	Station	Samples	Pb (nM)
1	1 S	9.56	21	21S	8.73	41	41S	9.75
1	1B	10.52	21	21B	9.85	41	41B	8.49
2	2S	9.79	22	22S	8.40	42	42S	8.11
2	2B	13.18	22	22B	9.03	42	42B	8.59
2	3S	8.40	22	23S	8.16	42	43S	9.22
3	3B	9.51	25	23B	9.27	43	43B	11.29
4	4S	10.23	24	24S	7.63	4.4	44S	8.59
4	4B	11.15	24	24B	10.33	44	44B	9.75
-	5S	8.49	25	25S	9.80	45	45S	7.58
5	5B	10.81	25	25B	9.07	45	45B	15.01
(6S	9.07		26S	9.51		46S	7.82
6	6B	8.97	26	26B	11.29	46	46B	11.87
-	7S	8.49	27	27S	10.23		47S	9.80
7	7B	11.25	27	27B	13.61	47	47B	9.56
0	8S	8.30		28S	10.52	40	48S	8.78
8	8B	8.83	28	28 28B 14.38 48	48B	11.25		
0	9S	7.58	20	29S	9.75	40	49S	9.46
9	9B	9.85	29	29B	10.62	49	49B	8.83
10	10S	8.83	20	30S	8.49	50	50S	8.25
10	10B	10.96	30	30B	11.25		50B	9.70
	11S	9.27	24	31S	7.14	51	51S	8.16
11	11B	11.82	31	31B	11.63		51B	9.46
10	12S	9.70		32S	8.40		52S	8.69
12	12B	9.60	32	32B	11.29	52	52B	11.92
	13S	8.54		33S	7.82		53S	7.34
13	13B	10.28	33	33B	11.97	53	53B	14.07
	14S	8.11		34S	9.22		54S	7.14
14	14B	7.78	34	34B	8.64	54	54B	9.27
	15S	8.88	25	35S	8.78		55S	8.56
15	15B	7.82	35	35B	11.48	55	55B	7.87
1.	16S	7.58	26	36S	9.70		56B	7.53
16	16B	6.95	36	36B	10.23	56	56B	9.60
4-	17S	9.75		37S	8.40	.	57S	8.40
17	17B	6.66	37	37B	6.47	57	57B	8.45
10	18S	6.37		38S	8.11		58S	10.52
18	18B	7.53	38	38B	10.81	58	58B	10.52
4.5	19S	7.05	26	398 8.74		-		
19	19B	8.78	39	39B	9.51	Note:		
•	20S	9.70	4.6	40S	8.30	• S: Su	rface layer, 2	lm 100
20	20B	8.54	40	40B	8.40	• B: Bottom laye	ttom layer, ≥	:100m

 Table 4.
 Pb-Concentration in seawater.

Table 5.	Cd-Concentration	in	seawater.
----------	------------------	----	-----------

Station	Samples	Cd (nM)	Station	Samples	Cd (nM)	Station	Samples	Cd (nM)
1	1 S	1.86	21	21S	2.05	41	41S	1.25
1	1B	2.14	21	21B	1.33	41	41B	2.31
	2S	1.95		22S	1.60	10	42S	1.42
2	2B	2.31	22	22B	2.05	42	42B	2.40
2	3S	1.69	22	238	1.42	42	43S	1.07
3	3B	2.05	23	23B	1.60	43	43B	2.58
4	4S	1.51	24	24S	1.33	44	44S	1.16
4	4B	1.42	24	24B	1.42	44	44B	2.14
-	5S	1.78	25	25S	1.86	45	45S	0.98
5	5B	1.51	25	25B	1.69	45	45B	2.22
(6S	1.60	24	26S	1.69	NC	46S	2.67
0	6B	1.96	26	26B	1.95	40	46B	2.40
7	7S	1.51	27	27S	1.51	47	47S	2.49
7	7B	1.16	27	27B	2.31	47	47B	2.58
0	8S	1.42	29	28S	1.60	18	48S	1.25
8	8B	1.33	28	28B	2.76	48	48B	2.67
0	9S	1.60	20	29S	2.31	40	49S	1.86
9	9B	1.33	29	29B	2.85	49	49B	1.60
10	10S	1.33	20	30S	1.51	50	50S	2.31
10	10B	2.05	30	30B	2.76		50B	2.05
11	11S	1.07	21	31S	1.69		51S	1.78
11	11B	2.14	31	31B	2.49	51	51B	2.31
10	12S	0.98	22	32S	1.95	50	52S	1.51
12	12B	2.40	32	32B	2.14	52	52B	3.38
12	13S	1.16	22	33S	1.25	52	53S	1.42
13	13B	2.76	33	33B	2.31	53	53B	3.91
14	14S	1.60	24	34S	1.16	- 4	54S	1.25
14	14B	1.25	34	34B	1.07	54	54B	3.11
15	15S	1.07	25	35S	1.33		55S	1.07
15	15B	1.42	35	35B	1.51	22	55B	2.14
16	16S	1.25	26	36S	1.51	=(56B	2.55
16	16B	1.25	30	36B	2.14	50	56B	2.49
17	17S	1.69	27	37S	1.80	57	57S	0.98
1/	17B	1.86	51	37B	2.67	5/	57B	2.85
10	18S	1.42	20	38S	1.95		58S	2.05
18	18B	1.95	30	38B	1.69	58	58B	5.05
10	19S	1.86	30	39S	2.67	Note		
19	19B	1.16	37	39B	3.39	NULE:	ufaco lavor 1	
20	20S	2.67	40	40S	1.51	• 5: Su	rjace iayer, 2	m 100
20 20B	20B	1.07	40	40B	2.14	• B: Bo	ttom layer, ≥	:100m

Table 6.	Zn-Concentration	in	seawater.
----------	------------------	----	-----------

Station	Samples	Zn (nM)	Station	Samples	Zn (nM)	Station	Samples	Zn (nM)
1	1 S	156.52	21	21S	156.68	41	41S	136.96
1	1B	188.38	21	21B	118.45	41	41B	147.73
	2S	149.36		22S	134.38	12	42S	146.97
2	2B	180.65	22	22B	155.31	42	42B	133.17
2	3S	133.32	22	23S	120.43	42	43S	134.08
3	3B	181.11	23	23B	134.38	43	43B	154.86
4	4S	145.91	24	24S	158.95		44S	133.17
4	4B	162.90	24	24B	138.63	44	44B	168.06
_	5S	152.13		25S	132.56	45	45S	172.00
5	5B	150.46	25	25B	135.59	45	45B	158.05
	6S	150.46	24	26S	145.91		46S	161.83
0	6B	147.27	26	26B	157.14	46	46B	147.73
_	7S	127.10		27S	152.73	47	47S	163.96
7	7B	132.87	27	27B	170.02	47	47B	146.82
	8S	127.71		28S	150.00	40	48S	132.56
8	8B	137.57	28	28B	188.38	48	48B	150.76
	9S	133.59	•	29S	151.22	40	49S	131.65
9	9B	149.85	29	29B	174.27	49	49B	156.53
10	10S	162.75	•	30S	156.37	50	50S	136.96
10	10B	156.38	30	30B	182.92		50B	167.91
	11S	133.47		31S	146.06	51	51S	133.17
11	11B	158.05	31	31B	198.99		51B	203.55
10	12S	141.36		32S	147.43		52S	140.45
12	12B	135.59	32	32B	173.82	52	52B	161.99
10	13S	115.42	22	33S	134.53	52	53S	150.16
13	13B	138.63	33	33B	164.11	55	53B	150.46
14	14S	133.47	24	34S	142.42	54	54S	126.04
14	14B	131.50	34	34B	176.24	54	54B	134.08
15	15S	141.97	25	35S	140.15		55S	150.46
15	15B	131.05	35	35B	148.49	55	55B	156.53
	16S	133.32		36S	157.44		56B	150.64
16	16B	139.81	36	36B	172.00	56	56B	167.75
	17S	123.31		37S	134.54		57S	152.13
17	17B	140.45	37	37B	148.95	57	57B	173.82
10	18S	154.86	20	38S	150.61	-0	58S	102.53
18	18B	163.50	38	38B	146.97	58	58B	187.17
10	19S	150.15	20	39S	139.08	Note	-	-
19	19B	155.01	39	39B	156.53	Note:	C 1 C	
	20S	167.14	40	40S	133.32	• S: Su	rjace iayer, 2	<i>m</i>
20	20B	138.21	40	40B	161.98	• B: Bottom layer, a	:100m	

 Table 7. Ni-Concentration in seawater.

Station	Samples	Ni (nM)	Station	Samples	Ni (nM)	Station	Samples	Ni (nM)
1	1 S	20.61	21	21S	17.54	41	41S	13.29
1	1B	36.62	21	21B	25.89	41	41B	29.47
2	2S	27.59	22	22S	28.62	42	42S	27.93
2	2B	33.73	22	22B	24.87	42	42B	21.80
3	3S	25.21	22	23S	22.82	43	43S	29.64
3	3B	39.35	23	23B	27.59	43	43B	24.19
4	4S	23.34	24	24S	21.63	44	44S	22.14
4	4B	34.41	24	24B	28.96	44	44B	22.65
F	5S	19.08	25	25S	19.76	45	45S	21.46
5	5B	29.47	25	25B	32.19	45	45B	36.45
(6S	17.20	26	26S	25.21	16	46S	22.31
0	6B	29.98	20	26B	27.59	40	46B	34.41
7	7S	33.73	27	27S	34.24	47	47S	20.09
/	7B	24.53	27	27B	27.93	4/	47B	33.38
0	8S	19.07	29	28S	24.18	40	48S	19.08
8	8B	25.21	28	28B	25.89	48	48B	32.02
0	9S	14.82	20	29S	27.59	40	49S	17.20
9	9B	27.59	29	29B	28.96	49	49B	29.64
10	10S	16.01	20	30S	25.04	50 -	50S	30.83
10	10B	30.83	30	30B	41.05		50B	35.09
11	11S	21.46	21	31S	23.51	-1	51S	29.13
11	11B	30.49	31	31B	39.69	51	51B	36.28
10	12S	23.51		32S	21.97		52S	17.54
12	12B	22.82	32	32B	42.24	52	52B	37.13
12	13S	22.82	22	33S	24.02		53S	16.86
13	13B	21.46	33	33B	36.96	53	53B	39.86
14	14S	24.19	24	34S	29.47	54	54S	31.68
14	14B	21.80	34	34B	39.86	54	54B	33.72
15	15S	15.33	25	35S	27.59		55S	22.31
15	15B	34.58	35	35B	30.99	55	55B	32.70
4.6	16S	18.90	24	36S	22.82		56B	26.92
16	16B	18.90	36	36B	29.98	56	56B	31.85
	17S	18.39		37S	15.67		57S	21.12
17	17B	19.42	37	37B	30.83	57	57B	34.41
10	18S	20.27		38S	16.52	-0	58S	19.25
18	18B	20.10	38	38B	34.58	58	58B	31.34
10	19S	20.44	20	39S	23.80	Nada		
19	19B	23.34	39	39B	29.97	Note:		
•	20S	19.25		40S	16.86	• S: Su	rface layer, 2	т
20	20B	24.87	40	40B	39.86	• B: Bo	100m	

Station	Samples	Cr (nM)	Station	Samples	Cr (nM)	Station	Samples	Cr (nM)
1	1 S	23.08	21	21S	16.54	41	41S	16.73
1	1B	22.12	21	21B	13.08	71	41B	27.31
2	2S	19.80	22	22S	15.19	12	42S	17.69
2	2B	24.23	44	22B	14.23	42	42B	16.73
2	3S	18.85	22	23S	14.23	13	43S	24.42
3	3B	18.85	23	23B	15.19	43	43B	26.35
4	4S	18.46	24	24S	21.73	44	44S	16.54
4	4B	16.15	24	24B	21.35	44	44B	27.30
-	5S	15.96	25	25S	20.00	45	45S	34.81
5	5B	25.38	25	25B	19.04	45	45B	24.23
	6S	18.65	24	26S	22.31	AC	46S	25.00
0	6B	27.12	26	26B	23.66	40	46B	22.69
-	7S	19.42	27	27S	18.85	47	47S	24.23
7	7B	20.77	27	27B	20.77		47B	25.38
0	8S	16.35	29	28S	14.62	48 -	48S	21.15
8	8B	30.77	28	28B	21.54		48B	23.65
0	9S	21.54	20	29S	25.39	40	49S	14.82
9	9B	15.77	29	29B	24.23	49	49B	24.04
10	10S	14.62	20	30S	17.31	50	50S	15.19
10	10B	23.46	30	30B	25.00		50B	35.00
	11S	17.69		31S	16.54		51S	16.54
11	11B	18.08	31	31B	21.35	51	51B	26.73
10	12S	16.73	22	32S	13.85		52S	15.38
12	12B	26.16	32	32B	16.92	52	52B	23.37
10	13S	21.35	22	33S	16.15		53S	20.58
13	13B	23.85	33	33B	19.04	53	53B	28.46
14	14S	18.46		34S	15.77	- 4	54S	21.54
14	14B	25.19	34	34B	25.58	54	54B	25.00
15	15S	26.54	25	35S	15.19		55S	18.85
15	15B	20.96	35	35B	23.85	22	55B	33.85
16	16S	14.23	24	36S	25.77	= (56B	15.92
16	16B	22.18	36	36B	16.73	56	56B	30.39
17	17S	14.82	25	37S	22.31		57S	15.00
17	17B	16.73	37	37B	17.69	57	57B	37.31
10	18S	23.27	20	38S	17.31	50	58S	20.38
18	18B	15.19	38	38B	25.58	58	58B	25.38
10	19S	25.00	20	39S	25.19	Note	-	
19	19B	16.92	39	39B	24.23	Note:	C 1 C	
•	20S	17.69	40	40S	25.77	• S: Su	rface layer, 2 -	m
20	20B	18.08	40	40B	25.19	• B: Bottom layer, \geq		:100m

 Table 8. Cr-Concentration in seawater.

Table 9.As-Concentration in seawater.

Station	Samples	As (nM)	Station	Samples	As (nM)	Station	Samples	As (nM)
1	1S	21.22	21	21S	20.82	41	41S	23.62
1	1B	17.22	21	21B	18.55	71	41B	21.49
2	2S	22.29	22	22S	19.22	42	42S	22.02
4	2B	20.15	44	22B	16.68	72	42B	23.89
2	3S	17.48	23	23S	20.28	13	43S	21.76
3	3B	21.49	23	23B	19.35	43	43B	23.62
4	4S	27.76	24	24S	24.56	44	44S	23.22
4	4B	21.75	24	24B	22.82	++	44B	26.83
5	5S	23.89	25	25S	18.15	45	45S	21.36
3	5B	17.61	23	25B	19.22	43	45B	21.36
6	6S	20.55	26	26S	22.56	16	46S	24.16
0	6B	20.55	20	26B	20.02	40	46B	28.83
7	7S	32.70	27	27S	20.83	47	47S	27.76
/	7B	21.88	21	27B	18.15	4/	47B	19.09
0	8S	21.22	29	28S	19.75	40	48S	25.09
ð	8B	21.49	28	28B	18.01	40	48B	22.02
0	9S	30.96	20	29S	23.09	40	49S	23.49
9	9B	21.62	29	29B	20.82	49	49B	29.09
10	10S	26.29	20	30S	21.22	50 -	50S	23.22
10	10B	18.82	30	30B	20.42		50B	22.96
11	11S	33.37	21	31S	17.75	51	51S	26.96
11	11B	19.09	31	31B	78.95	51	51B	20.28
10	12S	21.16	22	32S	21.22	52	52S	21.89
12	12B	20.95	32	32B	24.16	52	52B	23.22
10	13S	21.22	22	33S	22.69	53	53S	20.42
13	13B	20.15	33	33B	19.22	53	53B	24.69
14	14S	21.49	24	34S	23.09	- 4	54S	19.62
14	14B	20.28	34	34B	19.75	54	54B	24.96
4.5	15S	19.62	25	35S	20.42		55S	21.89
15	15B	21.36	35	35B	23.49	55	55B	24.16
16	16S	19.22		36S	26.03		56B	23.36
16	16B	18.68	36	36B	38.03	56	56B	19.35
1.	17S	23.89	25	37S	19.88		57S	19.89
17	17B	16.82	37	37B	19.49	57	57B	26.43
10	18S	17.88	20	38S	16.42	-0	58S	20.55
18	18B	19.62	38	38B	19.49	58	58B	18.82
40	19S	23.49		39S	21.22	NU		
19	19B	19.62	39	39B	20.55	Note:	<i>c</i> 1	2
_	20S	21.76		40S	19.62	• S: Su	rface layer,	2m
20	20B	20.82	40	40B	21.08	• B: Ba	ottom layer,	≥100m

Station	Samples	Hg (nM)	Station	Samples	Hg (nM)	Station	Samples	Hg (nM)
1	1 S	0.60	21	21S	0.85	41	41S	0.79
1	1B	0.55	21	21B	0.35	41	41B	0.89
2	2S	0.55	22	22S	0.45	42	42S	0.85
2	2B	0.69	22	22B	0.35	42	42B	0.89
2	3S	0.59	22	23S	0.45	42	43S	0.85
3	3B	0.69	23	23B	1.24	43	43B	0.89
	4S	0.40	24	24S	0.49		44S	0.85
4	4B	0.40	24	24B	0.49	44	44B	0.80
_	5S	0.59	25	25S	0.45	45	45S	0.49
5	5B	0.85	25	25B	0.41	45	45B	0.82
	6S	0.75	•	26S	0.49		46S	0.60
6	6B	0.55	26	26B	0.45	46	46B	0.45
_	7S	0.75	~-	27S	0.45		47S	0.49
7	7B	0.55	27	27B	0.35	47	47B	0.60
	8S	6.48	• •	28S	0.35		48S	0.60
8	8B	0.49	28	28B	0.49	48	48B	3.60
	9S	1.54	• •	29S	0.99	10	49S	0.70
9	9B	0.89	29	29B	0.89	49	49B	1.05
10	10S	0.59	• •	30S	0.45	50	50S	2.09
10	10B	0.60	30	30B	0.75		50B	1.45
	11S	0.70		31S	0.65		51S	0.60
11	11B	0.70	31	31B	0.65	51	51B	0.55
	12S	0.75		32S	0.89		52S	0.55
12	12B	0.45	32	32B	0.60	52	52B	0.55
	13S	0.55		33S	0.80		53S	0.65
13	13B	0.45	33	33B	3.09	53	53B	0.65
	14S	0.40		34S	1.69		54S	0.60
14	14B	0.80	34	34B	0.85	54	54B	0.49
	15S	0.41	25	35S	0.60		55S	0.80
15	15B	0.65	35	35B	0.70	55	55B	0.49
	16S	0.35		36S	0.75		56B	0.60
16	16B	0.49	36	36B	089	56	56B	7.13
	17S	0.35		37S	0.45		57S	1.20
17	17B	0.41	37	37B	0.75	57	57B	0.89
4-	18S	0.55		38S	0.60	-0	58S	0.60
18	18B	0.89	38	38B	0.75	58	58B	2.46
	19S	0.45	••	39S	0.70	 		
19	19B	0.41	39	39B	0.95	Note:		
	20S	0.55	10	40S	0.60	• S: Su	rface layer, 2	² m
20	20B	0.90	40	40B	2.59	• B: Bo	ttom layer, ≥	:100m

 Table 10.
 Hg-Concentration in seawater.

 Table 11.
 Cu-Concentration in seawater.

Station	Samples	Cu (µg/l)	Station	Samples	Cu (µg/l)	Station	Samples	Cu (µg/l)	
1	1S	4.87	21	21S	4.14	41	41S	3.78	
1	1B	5.74	21	21B	5.09	41	41B	5.03	
2	2S	4.69	22	22S	4.78	42	42S	3.69	
2	2B	5.54	22	22B	4.62	42	42B	4.96	
2	3S	4.74	22	23S	4.62	42	43S	4.13	
3	3B	4.79	23	23B	4.31	43	43B	4.82	
4	4S	5.02	24	24S	5.01	44	44S	3.82	
4	4B	4.86	24	24B	5.03	44	44B	5.31	
5	5S	3.96	25	25S	4.77	45	45S	4.07	
5	5B	5.12	25	25B	4.86	45	45B	5.05	
(6S	4.32	26	26S	4.31	AC	46S	3.69	
0	6B	4.27	20	26B	5.12	40	46B	4.97	
7	7S	4.18	27	27S	4.83	47	47S	3.87	
/	7B	4.31	27	27B	4.96	4/	47B	4.83	
0	8S	3.74	28	28S	4.62	40	48S	4.13	
0	8B	4.74	28	28B	5.03	40	48B	3.72	
0	9S	3.84	20	29S	4.77	40	49S	4.26	
9	9B	4.26	29	29B	5.86	49	49B	4.07	
10	10S	3.86	20	30S	4.62	50	50S	3.93	
10	10B	4.59	30	30B	5.42	50	50B	5.18	
11	11 S	3.71	21	31S	3.94	51	51S	4.08	
11	11B	4.61	51	31B	4.94	51	51B	4.84	
10	12S	3.30	22	32S	3.98	52	52S	5.01	
12	12B	3.93	32	32B	5.15	52	52B	5.03	
12	13S	4.26	22	33S	4.32	53	53S	3.82	
15	13B	4.62	33	33B	4.82		53B	4.69	
14	14S	3.93	24	34S	3.74	54	54S	3.69	
14	14B	4.81	34	34B	4.76	54	54B	3.87	
15	15S	4.12	35	35S	4.12	55	55S	4.13	
15	15B	5.12	55	35B	4.21	55	55B	5.13	
16	16S	3.84	36	36S	3.76	56	56B	4.05	
10	16B	3.97	30	36B	3.88	50	56B	5.14	
17	17S	4.07	37	37S	4.31	57	57S	3.92	
17	17B	4.71	37	37B	4.92	57	57B	4.98	
19	18S	3.76	28	38S	4.64	58	58S	4.48	
10	18B	4.82	30	38B	3.74	50	58B	4.72	
10	19S	3.94	30	39S	4.39	Note: • S: Surface layer 2m			
19	19B	4.76	39	39B	4.87				
20	20S	3.87	40	40S	3.81	• S: Surface layer, 2m			
20	20B	4.88	40	40B	5.12	• <i>B</i> : Bol	uom tayer, ≥1	oom	

Station	Samples	Pb (µg/l)	Station	Samples	Pb (µg/l)	Station	Samples	Pb (µg/l)
1	1S	1.98	21	21S	1.81	41	41S	2.02
1	1B	2.18	21	21B	2.04	41	41B	1.76
2	2S	2.03	22	22S	1.74	42	42S	1.68
2	2B	2.73	22	22B	1.87	42	42B	1.78
2	3S	1.74	22	23S	1.69	43	43S	1.91
3	3B	1.97	23	23B	1.92	43	43B	2.34
4	4S	2.12	24	24S	1.58	4.4	44S	1.78
4	4B	2.31	24	24B	2.14	44	44B	2.02
-	5S	1.76	25	25S	2.03	45	45S	1.57
5	5B	2.24	25	25B	1.88	45	45B	3.11
(6S	1.88	26	26S	1.97	16	46S	1.62
0	6B	1.86	26	26B	2.34	40	46B	2.46
-	7S	1.76	27	27S	2.12	47	47S	2.03
7	7B	2.33	27	27B	2.82	47	47B	1.98
0	8S	1.72	20	28S	2.18	40	48S	1.82
8	8B	1.83	28	28B	2.98	48	48B	2.33
0	9S	1.57	20	29S	2.02	40	49S	1.96
9	9B	2.04	29	29B	2.20	49	49B	1.83
10	10S	1.83	20	30S	1.76	-0	50S	1.71
10	10B	2.27	30	30B	2.33	50	50B	2.01
	11S	1.92		31S	1.48		51S	1.69
11	11B	2.45	31	31B	2.41	51	51B	1.96
	12S	2.01		32S	1.74		52S	1.80
12	12B	1.99	32	32B	2.34	52	52B	2.47
	13S	1.77		33S	1.62		53S	1.52
13	13B	2.13	33	33B	2.48	53	53B	2.91
	14S	1.68		34S	1.91		54S	1.48
14	14B	1.61	34	34B	1.79	54	54B	1.92
	15S	1.84		35S	1.82		55S	1.77
15	15B	1.62	35	35B	2.38	55	55B	1.63
	16S	1.57		36S	2.01		56B	1.56
16	16B	1.44	36	36B	2.12	56	56B	1.99
	17S	2.02		37S	1.74		57S	1.74
17	17B	1.38	37	37B	1.34	57	57B	1.76
10	18S	1.32		38S	1.68		58S	2.18
18	18B	1.56	38	38B	2.24	58	58B	2.18
46	19S	1.46		39S	1.81	500 2		
19	19B	1.82	39	39B	1.97	Note:		
	20S	2.01		40S	1.72	• S: Surface layer, 2m		
20	20B	1.77	40	40B	1.74	• B: Bot	tom layer, ≥1	00m

 Table 12.
 Pb-Concentration in seawater.

 Table 13.
 Cd-Concentration in seawater.

Station	Samples	Cd (µg/l)	Station	Samples	Cd (µg/l)	Station	Samples	Cd (µg/l)
1	1S	0.21	01	21S	0.23	41	41S	0.14
1	1B	0.24	21	21B	0.15	41	41B	0.26
2	2S	0.22	22	22S	0.18	40	42S	0.16
2	2B	0.26	22	22B	0.23	42	42B	0.27
2	3S	0.19		23S	0.16	12	43S	0.12
3	3B	0.23	23	23B	0.18	43	43B	0.29
	4S	0.17		24S	0.15		44S	0.13
4	4B	0.16	24	24B	0.16	44	44B	0.24
_	5S	0.20		25S	0.21	45	45S	0.11
5	5B	0.17	25	25B	0.19	45	45B	0.25
	6S	0.18	24	26S	0.19	16	46S	0.30
6	6B	0.22	26	26B	0.22	46	46B	0.27
_	7S	0.17		27S	0.17		47S	0.28
7	7B	0.13	27	27B	0.26	47	47B	0.29
0	8S	0.16	•	28S	0.18	40	48S	0.14
8	8B	0.15	28	28B	0.31	48	48B	0.30
	9S	0.18		29S	0.26	4.0	49S	0.21
9	9B	0.15	29	29B	0.32	49	49B	0.18
	10S	0.15		30S	0.17		50S	0.26
10	10B	0.23	30	30B	0.31	50	50B	0.23
	11S	0.12		31S	0.19		51S	0.20
11	11B	0.24	31	31B	0.28	51	51B	0.26
	12S	0.11		32S	0.22		52S	0.17
12	12B	0.27	32	32B	0.24	52	52B	0.38
	13S	0.13		33S	0.14		53S	0.16
13	13B	0.31	33	33B	0.26	53	53B	0.44
	14S	0.18		34S	0.13		54S	0.14
14	14B	0.14	34	34B	0.12	54	54B	0.35
	15S	0.12		35S	0.15		55S	0.12
15	15B	0.16	35	35B	0.17	55	55B	0.24
	16S	0.14		36S	0.17		56B	0.29
16	16B	0.14	36	36B	0.24	56	56B	0.28
	17S	0.19		37S	0.20		57S	0.11
17	17B	0.21	37	37B	0.30	57	57B	0.32
	18S	0.16		38S	0.22		58S	0.23
18	18B	0.22	38	38B	0.19	58	58B	0.57
	19S	0.21		39S	0.30			
19	19B	0.13	39	39B	0.38	Note:		
	20S	0.30		40S	0.17	• S: Sur	face layer, 2m	
20	20B	0.12	40	40B	0.24	• B: Bot	tom layer, ≥1	00m

Table 14.	Zn-Concentration in seawater.	
-----------	-------------------------------	--

Station	Samples	Zn (µg/l)	Station	Samples	Zn (µg/l)	Station	Samples	Zn (µg/l)
1	1S	10.32	21	21S	10.33	41	41S	9.03
1	1B	12.42	21	21B	7.81	41	41B	9.74
2	2S	9.85	22	22S	8.86	42	42S	9.69
2	2B	11.91	22	22B	10.24	42	42B	8.78
2	3S	8.79	22	23S	7.94	43	43S	8.84
3	3B	11.94	23	23B	8.86	43	43B	10.21
4	4S	9.62	24	24S	10.48	44	44S	8.78
4	4B	10.74	24	24B	9.14	44	44B	11.08
-	5S	10.03	25	25S	8.74	45	45S	11.34
5	5B	9.92	25	25B	8.94	45	45B	10.42
(6S	9.92	26	26S	9.62	AC	46S	10.67
0	6B	9.71	20	26B	10.36	40	46B	9.74
7	7S	8.38	27	27S	10.07	47	47S	10.81
/	7B	8.76	27	27B	11.21	47	47B	9.68
0	8S	8.42	20	28S	9.89	40	48S	8.74
δ	8B	9.07	28	28B	12.42	48	48B	9.94
0	9S	8.81	20	29S	9.97	40	49S	8.68
9	9B	9.88	29	29B	11.49	49	49B	10.32
10	10S	10.73	20	30S	10.31	50	50S	9.03
10	10B	10.31	30	30B	12.06	50	50B	11.07
11	11S	8.80	21	31S	9.63	51	51S	8.78
11	11B	10.42	31	31B	13.12	51	51B	13.42
10	12S	9.32	22	32S	9.72		52S	9.26
12	12B	8.94	32	32B	11.46	52	52B	10.68
10	13S	7.61	22	33S	8.87		53S	9.90
13	13B	9.14	33	33B	10.82	53	53B	9.92
14	14S	8.80		34S	9.39	- 4	54S	8.31
14	14B	8.67	34	34B	11.62	54	54B	8.84
4.5	15S	9.36	25	35S	9.24		55S	9.92
15	15B	8.64	35	35B	9.79	22	55B	10.32
16	16S	8.79	24	36S	10.38		56B	9.93
16	16B	9.22	36	36B	11.34	56	56B	11.06
15	17S	8.13	25	37S	8.87		57S	10.03
17	17B	9.26	31	37B	9.82	5/	57B	11.46
10	18S	10.21	20	38S	9.93	50	58S	6.76
18	18B	10.78	38	38B	9.69	58	58B	12.34
10	19S	9.90	20	39S	9.17	Note:		
19	19B	10.22	39	39B	10.32			
20	20S	11.02	40	40S	8.79	• S: Surface layer, 2m		
20	20B	9.11	40	40B	10.68	• B: Bot	tom tayer, ≥1	00m

 Table 15.
 Ni-Concentration in seawater.

Station	Samples	Ni (µg/l)	Station	Samples	Ni (µg/l)	Station	Samples	Ni (µg/l)
1	1 S	1.21	01	21S	1.21	41	41S	0.78
1	1B	2.15	21	21B	2.15	41	41B	1.73
2	2S	1.62	22	22S	1.62	42	42S	1.64
2	2B	1.98	22	22B	1.98	42	42B	1.28
2	3S	1.48	22	23S	1.48	42	43S	1.74
3	3B	2.31	23	23B	2.31	43	43B	1.42
4	4S	1.37	24	24S	1.37	44	44S	1.30
4	4B	2.02	24	24B	2.02	44	44B	1.33
F	5S	1.12	25	25S	1.12	45	45S	1.26
5	5B	1.73	25	25B	1.73	45	45B	2.14
(6S	1.01	26	26S	1.01	NC	46S	1.31
0	6B	1.76	26	26B	1.76	40	46B	2.02
-	7S	1.98	27	27S	1.98	47	47S	1.18
7	7B	1.44	27	27B	1.44	47	47B	1.96
o	8S	1.12	20	28S	1.12	40	48S	1.12
8	8B	1.48	28	28B	1.48	48	48B	1.88
0	9S	0.87	20	29S	0.87	40	49S	1.01
9	9B	1.62	29	29B	1.62	49	49B	1.74
10	10S	0.94	20	30S	0.94	50	50S	1.81
10	10B	1.81	30	30B	1.81	50	50B	2.06
11	11 S	1.26	21	31S	1.26	51	51S	1.71
11	11B	1.79	51	31B	1.79	51	51B	2.13
10	12S	1.38	22	32S	1.38	52	52S	1.03
12	12B	1.34	32	32B	1.34	52	52B	2.18
12	13S	1.34	22	33S	1.34	52	53S	0.99
15	13B	1.26	33	33B	1.26	55	53B	2.34
14	14S	1.42	24	34S	1.42	54	54S	1.86
14	14B	1.28	34	34B	1.28	54	54B	1.98
15	15S	0.90	25	35S	0.90	55	55S	1.31
15	15B	2.03	35	35B	2.03	55	55B	1.92
16	16S	1.11	26	36S	1.11	56	56B	1.58
10	16B	1.11	30	36B	1.11	50	56B	1.87
17	17S	1.08	27	37S	1.08	57	57S	1.24
17	17B	1.14	57	37B	1.14	57	57B	2.02
10	18 S	1.19	29	38S	1.19	59	58S	1.13
18	18B	1.18	30	38B	1.18	20	58B	1.84
10	19S	1.20	20	39S	1.20	Note:		
19	19B	1.37	37	39B	1.37			
20	20S	1.13	40	40S	1.13	• 5: 5ur	iace iayer, 2m	0.0
20	20B	1.46	40	40B	1.46	• B: Bol	iom iayer, ≥1	oom

 Table 16.
 Cr-Concentration in seawater.

Station	Samples	Cr (µg/l)	Station	Samples	Cr (µg/l)	Station	Samples	Cr (µg/l)
1	1S	1.20	01	21S	0.86	41	41S	0.87
1	1B	1.15	21	21B	0.68	41	41B	1.42
	2S	1.03	22	22S	0.79	42	42S	0.92
2	2B	1.26	22	22B	0.74	42	42B	0.87
2	3S	0.98	22	23S	0.74	42	43S	1.27
3	3B	0.98	23	23B	0.79	43	43B	1.37
4	4S	0.96	24	24S	1.13	44	44S	0.86
4	4B	0.84	24	24B	1.11	44	44B	1.42
-	5S	0.83	25	25S	1.04	45	45S	1.81
5	5B	1.32	25	25B	0.99	45	45B	1.26
(6S	0.97	24	26S	1.16	AC	46S	1.30
0	6B	1.41	26	26B	1.23	40	46B	1.18
-	7S	1.01	27	27S	0.98	47	47S	1.26
7	7B	1.08	27	27B	1.08	47	47B	1.32
0	8S	0.85	20	28S	0.76	40	48S	1.10
δ	8B	1.60	28	28B	1.12	48	48B	1.23
0	9S	1.12	20	29S	1.32	40	49S	0.77
9	9B	0.82	29	29B	1.26	49	49B	1.25
10	10S	0.76	20	30S	0.90	50	50S	0.79
10	10B	1.22	30	30B	1.30	50	50B	1.82
11	11S	0.92	21	31S	0.86	51	51S	0.86
11	11B	0.94	51	31B	1.11	51	51B	1.39
10	12S	0.87	22	32S	0.72	50	52S	0.80
12	12B	1.36	32	32B	0.88	52	52B	1.22
12	13S	1.11	22	33S	0.84	52	53S	1.07
15	13B	1.24	33	33B	0.99	55	53B	1.48
14	14S	0.96	24	34S	0.82	54	54S	1.12
14	14B	1.31	34	34B	1.33	54	54B	1.30
15	15S	1.38	25	35S	0.79	55	55S	0.98
15	15B	1.09	35	35B	1.24	55	55B	1.76
16	16S	0.74	36	36S	1.34	56	56B	0.83
10	16B	1.15	30	36B	0.87	50	56B	1.58
17	17S	0.77	27	37S	1.16	57	57S	0.78
17	17B	0.87	57	37B	0.92	57	57B	1.94
10	18S	1.21	20	38S	0.90	59	58S	1.06
19	18B	0.79	30	38B	1.33	20	58B	1.32
10	19S	1.30	20	39S	1.31	Note:		
19	19B	0.88	39	39B	1.26			
20	20S	0.92	40	40S	1.34	• S: Surface layer, 2m		
20	20B	0.94	40	40B	1.31	• B: Bo	ttom layer, ≥	2100m

 Table 17.
 As-Concentration in seawater.

Station	Samples	As (µg/l)	Station	Samples	As (µg/l)	Station	Samples	As (µg/l)
1	1S	1.59	21	21S	1.56	41	41S	1.77
1	1B	1.29	21	21B	1.39	41	41B	1.61
2	2S	1.67	22	22S	1.44	42	42S	1.65
2	2B	1.51	22	22B	1.25	42	42B	1.79
2	3S	1.31	22	23S	1.52	42	43S	1.63
3	3B	1.61	23	23B	1.45	43	43B	1.77
4	4S	2.08	24	24S	1.84	44	44S	1.74
4	4B	1.63	24	24B	1.71	44	44B	2.01
-	5S	1.79	25	25S	1.36	45	45S	1.60
5	5B	1.32	25	25B	1.44	45	45B	1.60
(6S	1.54	26	26S	1.69	16	46S	1.81
0	6B	1.54	26	26B	1.50	40	46B	2.16
-	7S	2.45		27S	1.56	45	47S	2.08
1	7B	1.64	27	27B	1.36	47	47B	1.43
0	8S	1.59	29	28S	1.48	49	48S	1.88
ð	8B	1.61	28	28B	1.35	48	48B	1.65
0	9S	2.32	20	29S	1.73	40	49S	1.76
9	9B	1.62	29	29B	1.56	49	49B	2.18
40	10S	1.97	20	30S	1.59		50S	1.74
10	10B	1.41	30	30B	1.53	50	50B	1.72
	11S	2.50	21	31S	1.33	- 1	51S	2.02
11	11B	1.43	31	31B	5.92	51	51B	1.52
10	12S	1.59		32S	1.59		52S	1.64
12	12B	1.57	32	32B	1.81	52	52B	1.74
12	13S	1.59	22	33S	1.70		53S	1.53
13	13B	1.51	33	33B	1.44	53	53B	1.85
	14S	1.61		34S	1.73		54S	1.47
14	14B	1.52	34	34B	1.48	54	54B	1.87
15	15S	1.47	25	35S	1.53		55S	1.64
15	15B	1.60	35	35B	1.76	55	55B	1.81
16	16S	1.44	26	36S	1.95	-	56B	1.75
16	16B	1.40	36	36B	2.85	50	56B	1.45
15	17S	1.79	25	37S	1.49		57S	1.49
17	17B	1.26	37	37B	1.46	57	57B	1.98
10	18S	1.34	20	38S	1.23	20	58S	1.54
18	18B	1.47	38	38B	1.46	58 58B 1.41		
10	19S	1.76	20	39S	1.59			
19	19B	1.47	39	39B	1.54	Note:		
•	20S	1.63	40	40S	1.47	• S: Su	irjace layer, 2m	00
20	20B	1.56	40	40B	1.58	• B: Be	ottom layer, ≥1	00m

Station	Samples	Hg (µg/l)	Station	Samples	Hg (µg/l)	Station	Samples	Hg (µg/l)	
1	1S	0.12	21	21S	0.17	41	41S	0.16	
I	1B	0.11	21	21B	0.07	41	41B	0.18	
2	2S	0.11	22	22S	0.09	42	42S	0.17	
2	2B	0.14	22	22B	0.07	42	42B	0.18	
2	3S	0.12	22	23S	0.09	42	43S	0.17	
3	3B	0.14	23	23B	0.25	43	43B	0.18	
4	4S	0.08	24	24S	0.10	44	44S	0.17	
4	4B	0.08	24	24B	0.10	44	44B	0.16	
_	5S	0.12		25S	0.09		45S	0.10	
5	5B	0.17	25	25B	0.08	45	45B	0.16	
	6S	0.15	•	26S	0.10		46S	0.12	
6	6B	0.11	26	26B	0.09	46	46B	0.09	
_	7S	0.15		27S	0.09		47S	0.10	
7	7B	0.11	27	27B	0.07	47	47B	0.12	
0	8S	1.30	20	28S	0.07	40	48S	0.12	
8	8B	0.10	28	28B	0.10	48	48B	0.72	
0	9S	0.31	20	29S	0.20	40	49S	0.14	
9	9B	0.18	29	29B	0.18	49	49B	0.21	
10	10S	0.12	20	30S	0.09		50S	0.42	
10	10B	0.12	- 30	30B	0.15	50	50B	0.29	
	11S	0.14		31S	0.13		51S	0.12	
11	11B	0.14	31	31B	0.13	51	51B	0.11	
	12S	0.15		32S	0.18		52S	0.11	
12	12B	0.09	32	32B	0.12	52	52B	0.11	
4.0	13S	0.11		33S	0.16		53S	0.13	
13	13B	0.09	33	33B	0.62	53	53B	0.13	
	14S	0.08		34S	0.34		54S	0.12	
14	14B	0.16	34	34B	0.17	54	54B	0.10	
	15S	0.08		35S	0.12		55S	0.16	
15	15B	0.13	35	35B	0.14	55	55B	0.10	
	16S	0.07		36S	0.15		56B	0.12	
16	16B	0.10	36	36B	0.17	56	56B	1.43	
	17S	0.07		37S	0.09		57S	0.24	
17	17B	0.08	37	37B	0.15	57	57B	0.18	
46	18S	0.11		38S	0.12		58S	0.12	
18	18B	0.18	38	38B	0.15	58	58B	0.49	
10	19S	0.09	20	39S	0.14	N 7 (
19	19B	0.08	39	39B	0.19	Note:			
	20S	0.11		40S	0.12	• S: Surface layer, 2m			
20	20B	0.18	40	40B	0.52	• B: Be	ottom layer,	≥100m	

Table 18. Hg-Concentration in seawater.

The results are shown that concentrations of Cu, Pb, Cd, Zn, Ni, Cr and As in every samples were low and well within the range found in near shore as well as open ocean seawater elsewhere (Table 19). One attention point is that relatively Hg concentrations in the study area are found as compared with those in other marine areas. The highest concentration of Hg was observed at the station 8, which was located, offshore (Fig. 9). The average concentration of Hg appears to be considerably higher than open ocean value but same range obtained in semi-enclosed unpolluted seas.

EAFD Southeast Asian Fisheries Development Center

Comparison of determined metals at different areas of world indicated that concentrations of Cu, Pb, Cd, Zn, Ni, Cr and As in Vietnamese Sea, South China Sea, Baltic Sea, Pacific Ocean and South African Coast were in the same concentration range.

The concentration values for all determined trace metals at the most stations were near placed average values. (Fig. 2, 3, 4, 5, 6, 7 and 8)

Table 19. Comparison of the concentration of Cu, Pb, Cd, Zn, Cr, Ni, As and Hg in Vietnamese waterswith other areas of the World (nM) [Utoomprurkporn (1997), Utoomprurkporn (1998),Brugman (1977), Bruland (1983), Millins(1964), Brugman (1977), Gian (1987), Jacinto (1996)].

Trace Metals	Cu	Pb	C d	Zn	Ni	Cr	A s	Hg
South African Coast	4.7-23.6		0.3-1.4		10.2-66.4			
South African Coast	468.18	20.67	2.58	424.9				
Sea of Japan	4.72		0.98		17.03			
China sea	6.3-36.2		0.4-1.1		11.9-85.2			
Gulf of Thailand	1.5-9.0	0.03-1.00	0.01-0.17		0.5-9.0			
Gulf of Thailand and East Coast of Peninsular Malaysia	1.6-14.2	0.05-0.87	0.001-0.10		1.7-8.5			
Off Sabah, Sarawak and Brunei Darussalam	2.9-20.5	0.02-1.50	0.01-1.37		1.3-14.1			
Ocean	47.24	14.49	0.89	152.9	8.82	0.96	40	0.15
Pacific Ocean	2.36	0.48	0.13	9.94	21.5		1.33	0.08
Atlantic Ocean		4.06	0.27	121.1				
Baltic Sea	111.8	3.86	2.58	125.38				
South China Sea	7.9-100	2.4-26	4.4-30	7.6-650.0				
This Study (Surface Layer)	65.67	10.04	1.61	142.6	22.69	19.26	22.35	0.775

Fig. 4. Cd-Concentration in seawater.

Fig. 5. Zn-Concentration in seawater.

Fig. 6. Ni-Concentration in seawater.

Fig. 7. Cr-Concentration in seawater.

Fig. 9. Hg-Concentration in seawater.

Southeast Asian Fisheries Development Center

ANALYSIS OF SEA-SEDIMENT

Sediment is known to be the key to ancient and historian environments. A sequence of sedimentary layers can tell us about environmental changes over time [Hallberg (1992)]. The geophysical properties of ocean sediments have been used as environmental indicators. Studies on ocean sediments have begun since the early 1900s. [Folk (1966), Krumbrein (1996)]

The recent sedimentary record can reveal cultural impacts on the environments during the industrial era. During formation and digenesis, the sediments also take an active part in the biogeochemical cycles of the elements, which affect the overlying water column.

Assessment of sediment contaminants has become increasingly import over the past several years. These assessments must be predictive of pollutant transport and of potential biological effects.

The bottom sediments logical properties not only play a major role in determining the richness of benthic life and productivity i.e. the diversity of benthic organisms but are also an important parameter that closely relates to pollution and mineral resources in the oceans.

It was carried as one subproject under the Collaborative Research Project. Objective of this research was to collect up - to -data sediment information concerning on the marine fishery resource and present oceanographic conditions in the sea area for suitable development of fishery resource scheme of the South China Sea.

Samples Collection and preparation

Surface sediment samples from offshore of Vietnam are collected using a Smith McIntyre grab on board of the M.V. SEAFDEC.

Out of the 58 stations, a total of 38 stations were sampled on 30 April 1999 to 29 May 1999 during the cruise (Fig. 1)

20 stations were not sampled due to technician problems (too deep).

A portion of sediment were carefully collected with a clean plastic spatula, kept in acid cleaned PE bottles, then stored at -20° C until ready for analysis.

The sediment samples were dried at 85° C then lightly ground to break up the particles. The sediment was achieved homogeneity and sieved through a 65 mm.

All equipment used for homogenization should be cleaned to minimize the potential of cross-contamination.

Analytical method

About 1 gram homogenized prepared sediment was totally digested in a Teflon decomposition vessel under pressure with a mixture of nitric, hydrochloric, perchloric and hydrofluoric acid. The Teflon bomb was placed inside a plastic pressure cooker, which was this. Then inside an ordinary household microwave over with the power turned on full for 1.5h at 150°C.

After cooling, the digest was than made up to 50ml with Mili-Q water.

The sediment samples were analyzed in laboratory of the Department for Analytical Science and Technique of the Institute of Chemistry, NCST.

Results and Discussion

This report focuses only on the information gathered and data analyzed from the surface sediment samples collected during cruise.

The metal concentrations of Cu, Pb, Cd, Zn, Cr and Ni were determined with the same

The contents of trace heavy metals in sediments of the South China Sea, nevertheless, are not well documented.

For quality assurance standard reference materials (MESS-1 Gulf of sea Miramichi River) from National Research Council, Marine Analytical Chemistry Standards program, Ottawa, Canada were digested as above and analyzed for metals with same above described methods. (Table 20)

The total contents of determined metals in surface sediment are shown in Tables 21, 22, 23, 24, 25, 26, 27 and 28 respectively.

The average concentration of metals in surface layer were found 65.57 nM for Cu, 10.04 nM for Pb, 1.61 nM for Cd, 142.65 nM for Zn, 22.35 nM for As, 0.775 nM for Hg, 22.39 nM for Ni and 19.26 nM for Cr.

Comparison of concentration of determined metals reported by different papers are difficult to compare because of different method for samples sampling, preparation and determining used.

The range of concentration of metals were $10.3 - 71.0 \ \mu g.g^{-1}$ for Cu, $12.9 - 33.7 \ \mu g.g^{-1}$ for Pb, $1.29 - 18.72 \ \mu g.g^{-1}$ for Cd, $45.8 - 164.8 \ \mu g.g^{-1}$ for Zn, $21.2 - 93.6 \ \mu g.g^{-1}$ for Cr, $5.7 - 45.8 \ \mu g.g^{-1}$ for Ni, $1.64 - 3.80 \ \mu g.g^{-1}$ for As, and $0.104 - 0.493 \ \mu g.g^{-1}$ for Hg. The levels found in the present study are similar to data from other marine. [Shazili (1986), Shazili (1997), Shazili (1998), Brugman (1982)]

The highest contents of metals were $71.0 \,\mu g.g^{-1}$ for Cu at station 2, $32.0 \,\mu g.g^{-1}$ for Pb at station 3, $18.72 \,\mu g.g^{-1}$ for Cd at station 40, $169.8 \,\mu g.g^{-1}$ for Zn at station 2, $41.0 \,\mu g.g^{-1}$ for Ni at station 3, $93.6 \,\mu g.g^{-1}$ for Cr at station 58, $3.8 \,\mu g.g^{-1}$ for As at station 5 and $0.493 \,\mu g.g^{-1}$ for Hg at station 57. (Fig. 10, 11, 12, 13, 14, 15, 16 and 17)

MESS - 1	Certified Value (µg.g ⁻¹)	Measured Value (µg.g ⁻¹)	% Mean Recovery
Cu	25.1	26.15	104.2
Pb	34.0	36.18	92.8
Cd	0.59	0.63	106.4
Zn	191	203.99	106.8
Cr	71	66.39	93.5
Ni	29.5	28.62	97.0
Со	10.8	10.23	94.7
Hg	0.171	0.187	109.4

 Table 20. Analysis of certified reference materials.

 Table 21. Cu-Content in surface Sediment.

No.	Station	Cu (µg.g ^{.1})	No.	Station	Cu (µg.g ⁻¹)
1	1	30.0	20	37	16.2
2	2	71.0	21	38	28.0
3	3	50.5	22	39	25.7
4	4	31.1	23	40	20.9
5	5	26.2	24	44	10.3
6	6	31.4	25	45	14.3
7	7	36.6	26	46	16.0
8	8	22.3	27	47	10.7
9	9	36.1	28	48	17.6
10	10	32.3	29	49	11.1
11	11	29.0	30	50	18.8
12	12	35.8	31	51	22.5
13	13	24.1	32	52	28.1
14	14	24.9	33	53	28.0
15	20	35.0	34	54	23.5
16	21	34.9	35	55	28.7
17	29	17.6	36	56	25.1
18	35	28.1	37	57	33.2
19	36	15.7	38	58	31.4

No.	Station	Pb (µg.g ⁻¹)	No.	Station	Pb (µg.g ⁻¹)
1.	1	19.3	20	37	16.1
2.	2	18.3	21	38	16.3
3.	3	32.2	22	39	15.6
4.	4	13.8	23	40	17.1
5.	5	17.4	24	44	14.0
6.	6	13.5	25	45	15.3
7.	7	17.8	26	46	17.5
8.	8	19.6	27	47	18.4
9.	9	14.4	28	48	18.6
10.	10	12.9	29	49	20.48
11.	11	13.9	30	50	16.8
12.	12	20.9	31	51	15.4
13.	13	17.8	32	52	12.9
14.	14	19.3	33	53	19.3
15.	20	18.3	34	54	14.4
16.	21	18.5	35	55	17.2
17.	29	19.4	36	56	14.2
18.	35	21.6	37	57	12.9
19.	36	33.7	38	58	21.0

 Table 22. Pb-Content in surface Sediment.

 Table 23.
 Cd-Content in surface Sediment.

No.	Station	Cd (µg.g ⁻¹)	No.	Station	Cd (µg.g ⁻¹)
1.	1	2.52	20	37	3.02
2.	2	1.29	21	38	5.56
3.	3	3.99	22	39	4.37
4.	4	1.52	23	40	18.72
5.	5	4.07	24	44	2.88
6.	6	4.26	25	45	3.67
7.	7	3.91	26	46	3.53
8.	8	3.26	27	47	3.70
9.	9	3.73	28	48	4.28
10.	10	3.13	29	49	3.69
11.	11	3.75	30	50	3.40
12.	12	3.44	31	51	4.23
13.	13	2.45	32	52	4.12
14.	14	3.46	33	53	6.63
15.	20	3.64	34	54	3.41
16.	21	4.36	35	55	4.27
17.	29	2.87	36	56	4.17
18.	35	4.42	37	57	4.53
19.	36	5.57	38	58	3.61

 Table 24. Zn-Content in surface Sediment.

No.	Station	Zn (µg.g ⁻¹)	No.	Station	$Zn \\ (\mu g.g^{\cdot 1})$
1.	1	102.7	20	37	56.7
2.	2	164.8	21	38	88.1
3.	3	163.7	22	39	74.3
4.	4	118.8	23	40	51.8
5.	5	86.6	24	44	75.4
6.	6	140.0	25	45	76.5
7.	7	132.2	26	46	71.3
8.	8	86.0	27	47	45.8
9.	9	139.3	28	48	51.4
10.	10	123.9	29	49	60.1
11.	11	102.5	30	50	51.0
12.	12	145.1	31	51	58.1
13.	13	115.6	32	52	107.7
14.	14	119.9	33	53	87.5
15.	20	141.1	34	54	106.2
16.	21	133.4	35	55	126.3
17.	29	79.8	36	56	71.3
18.	35	116.0	37	57	91.0
19.	36	74.9	38	58	115.2

 Table 25. Ni-Content in surface Sediment

No.	Station	Ni (µg.g ⁻¹)	No.	Station	Ni (µg.g ⁻¹)
1.	1	11.9	20	37	23.9
2.	2	5.7	21	38	38.1
3.	3	41.0	22	39	29.6
4.	4	21.4	23	40	27.1
5.	5	19.3	24	44	27.8
6.	6	26.8	25	45	29.5
7.	7	35.0	26	46	29.5
8.	8	17.0	27	47	19.2
9.	9	40.8	28	48	27.3
10.	10	32.1	29	49	29.4
11.	11	28.7	30	50	27.9
12.	12	37.8	31	51	31.3
13.	13	22.8	32	52	41.5
14.	14	34.9	33	53	38.3
15.	20	45.8	34	54	29.5
16.	21	45.4	35	55	40.0
17.	29	26.4	36	56	29.4
18.	35	37.6	37	57	31.7
19.	36	30.9	38	58	33.8

No.	Station	Cr (µg.g ⁻¹)	No.	Station	Cr (µg.g ⁻¹)
1.	1	43.1	20	37	50.1
2.	2	21.2	21	38	63.9
3.	3	74.8	22	39	54.0
4.	4	54.2	23	40	45.7
5.	5	45.4	24	44	53.5
6.	6	72.0	25	45	59.4
7.	7	56.6	26	46	58.3
8.	8	40.7	27	47	55.3
9.	9	71.0	28	48	58.5
10.	10	41.4	29	49	61.1
11.	11	56.5	30	50	58.5
12.	12	82.5	31	51	61.8
13.	13	70.5	32	52	82.1
14.	14	67.4	33	53	63.5
15.	20	81.5	34	54	89.7
16.	21	78.4	35	55	93.1
17.	29	42.1	36	56	75.1
18.	35	73.0	37	57	89.3
19.	36	47.2	38	58	93.6

Table 26. Cr-Content in Surface Sediment.

Table 27. As-Content in surface Sediment.

No.	Station	As (µg.g ⁻¹)	No.	Station	As (µg.g ⁻¹)
1.	1	3.21	20	37	2.26
2.	2	3.21	21	38	2.62
3.	3	1.64	22	39	2.52
4.	4	2.86	23	40	3.62
5.	5	3.80	24	44	3.28
6.	6	2.78	25	45	2.00
7.	7	2.96	26	46	2.65
8.	8	1.76	27	47	2.16
9.	9	3.66	28	48	2.46
10.	10	2.98	29	49	3.26
11.	11	2.84	30	50	2.96
12.	12	2.64	31	51	3.44
13.	13	3.72	32	52	2.78
14.	14	2.92	33	53	3.12
15.	20	2.94	34	54	2.18
16.	21	2.40	35	55	2.46
17.	29	3.10	36	56	3.24
18.	35	2.86	37	57	2.78
19.	36	3.00	38	58	2.04

 Table 28. Hg-Content in surface Sediment.

No.	Station	$Hg (\mu g.g^{-1})$	No.	Station	$Hg (\mu g.g^{-1})$
1.	1	0.160	20	37	0.159
2.	2	0.181	21	38	0.168
3.	3	0.338	22	39	0.158
4.	4	0.170	23	40	0.139
5.	5	0.155	24	44	0.141
6.	6	0.142	25	45	0.164
7.	7	0.152	26	46	0.132
8.	8	0.107	27	47	0.120
9.	9	0.155	28	48	0.151
10.	10	0.394	29	49	0.139
11.	11	0.161	30	50	0.268
12.	12	0.133	31	51	0.162
13.	13	0.127	32	52	0.480
14.	14	0.141	33	53	0.211
15.	20	0.188	34	54	0.266
16.	21	0.127	35	55	0.169
17.	29	0.130	36	56	0.158
18.	35	0.178	37	57	0.493
19.	36	0.107	38	58	0.104

Fig. 14. Ni- Concentration in Sediment.

Fig. 15. Cr-Concentration in Sediment.

Fig. 16. As-Concentration in Sediment.

Fig. 17. Hg-Concentration in Sediment.

Conclusions

This research study was the first attempt, which covered largest surveyed areas of Vietnamese Sea.

The trace metal levels determined in this cruise is among the first reported values for trace heavy metals in seawater and sediments.

There is a meed to obtain other published data on trace metals at different areas of world.

It is now well know that trace metals are present in seawater and sediment in various chemical forms.

The determination and speciation of trace heavy metals in seawater and sediment for environmental research is of great significance for their interactions with suspended matter, sediment and their uptake by aquatic organimus and has become an area of key interest in present aquatic metal chemistry.

Data for distribution of trace metals between the water column, sediment and the suspended particulate material were important and necessary.

Studies on the relationship between metal concentration and other oceanography parameters and then fisheries resources in this study area are needed.

The coming sampling time is expected in the year of 2000 for further results to update the data in this report.

Acknowledgements

The Authors would like to thank Dr. Vu Van Trieu, Prof. Dr. Bui Dinh Chung, Dr. Dao Manh Son, the Research Institute of Marine Products - Vietnam, for their kind help and co-operation in this research. We give a special thank to the captain and crew of R.V. SEAFDEC for assisting in sample collection.

References

Brugmann L., D.1977. Nehring. Beitrage zur Meereskunde. Heft 39: 89-97.

- Brugmann L.1977. Zur Verteilung einiger Schwermetalle in der Ostsee. Acta Hydrochim. *Hydrobiol.* 5: 3-21.
- Brugmann L., U. Hennings. 1982. Stratigraphie und Spezifizierung von Metallen in Sedimenten der Westlichen Ostsee. Acta. Hydrochim. *Hydrobiol*. 10: 41-53.
- Bruland K.W.1983. Trace Elements in Seawater; In J.R. Riley, R. Chester. Chemical Oceanography. Academic Press. New York.
- Conference of the Vietnam Philippines. JOM SRE SCS'96, Hanoi, Vietnam, 1977, pp. 10

De Silva J.J.R.F. Interaction of Chemical Elements with Biological Systems; In R.J. Williams and J.J.R.F. De Silva (Eds.). New Trent in Bioinorganic Chemistry. Academic Press, London, pp. 449 -484

- Folk. R.L. 1966. A Review of Grain Size Parameter Sedimentology, 6: 73-93.
- Gian T.X.1987. Untersuchungen zur Bestimmung von Metallspuren in Naturlichen Proben. Dissertation. Rostock.
- Hallberg R.O.1992. Sediments their Interaction with Biogeochemical Cycles. Biogeochemical Cycles. Academic Press, pp. 155-174.
- Jacinto G.S., M.L.S.D. Mc Glone, C.I. Narcise, L.B. Velasquez, N.D. Cu, M.T. Nhuan. Chemical Hydrographic Feature of the South China Sea between Luzon Philippines and South Vietnam.
- Krumbein W.C.1937. Sediments and Exponential Curves. Jour. Geol. 45: 577-601.
- Mullins F. Chemistry and Ocean. Chem. a. Eng. News. Easton 1964. Spec. Rep.
- Shazili N.A.M., M.L.Husain, R.Yaacob. 1985.Heavy Metal Content of Sediment in South China Sea 1986, pp. 113-116. In: Matahari Expedition, Mohsin *et al.* (ed). 233 pp.
- Shazili N.A.M., M.K. Abd Rashi, M.L. Husain, A. Nordin S. Ali. 1997. Trace Metals in the Surface Sediments of the South China Sea. Area I: Gulf of Thailand and East Coast of Peninsular Malaysia. Proceedings of the First Technical Seminar on Marine Fishery Resources Survey in the South China Sea. Bangkok, Thailand, pp.73 - 85.
- Shazili N.A.M., M.K. Abd Rashi, M.L. Husain, R. Yaakob. 1998. Trace Metals in Surface Sediment of the South China Sea. Area II: Sarawak, Sabah and Brunei. Proceedings of the Second Technical Seminar on Marine Fishery Resources Survey in the South China Sea. Kuala Lumpur, Malaysia, pp.146 - 155.
- Utoomprurkporn W., M. Hungspreugs, S. Ratanachongkiat, A. Snidvongs. 1997. Biogeochemical Implications of Dissolved Trace Metals Concentration and Distribution in South China Sea. Area I: Gulf of Thailand and East Coast of Peninsular Malaysia. Proceedings of the First Technical Seminar on Marine Fishery Resources Survey in the South China Sea. Bangkok, Thailand, pp.86–99.
- Utoomprurkporn W., A. Snidvongs. 1998. Trace Metal Concentration and Distribution in Seawater of the South China Sea. Area II: Off Sabah, Sarawak und Brunei Darussalam. Proceedings of the Second Technical Seminar on Marine Fishery Resources Survey in the South China Sea. Kuala Lumpur, Malaysia, pp.129 145.