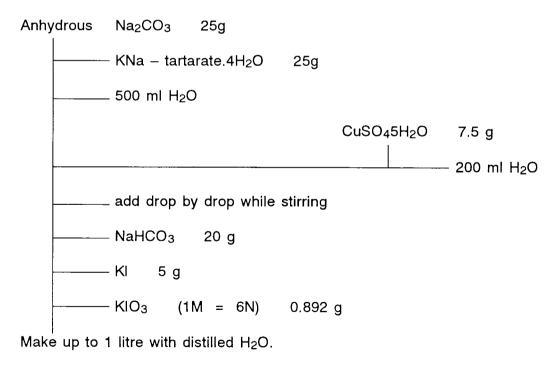
DETERMINATION OF SUGAR (SUCROSE) BY SOMOGYI'S METHOD

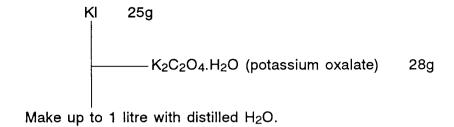
NG MUI CHNG

INTRODUCTION

Sugar is widely used in the manufacture of food as a taste and flavour enhancer. It is also capable of inhibiting, retarding or arresting the process of fermentation, acidification or any other decomposition of food. Thus sugar is also used as a preservative.


The sugar extracted from the sample is converted into glucose with diluted HCI. The glucose content is determined by Somogyi's method. The content of sugar is then back calculated from glucose content. The recovery of sugar was found to be 91% and the reproducibility was satisfactory.

PREPARATION OF SAMPLE


Take a representative sample of the product, pass it through the mincer, transfer into a labelled polyethylene bag and keep it chilled.

REAGENTS

a) Somogyi solution A

b) Somogyi solution B

c) 0.1N HCI

Dilute 10 ml 1N HCl in 100 ml volumetric flask.

d) 0.1N NaOH

Weigh 1 g NaOH, dissolve in distilled water and make up to 250 ml in a volumetric flask.

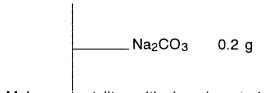
e) 2N H₂SO₄

Conc. H₂SO₄ 60 ml dilute to 1 litre.

f) Starch indicator

Weigh 1 g soluble starch and 0.1 g salicylic acid, dissolve both in 99 ml distilled water. Boil to dissolve the starch.

g) Dried KIO₃


Weigh about 2 g of KIO₃, dry in the oven at 120°C for 1 hr.

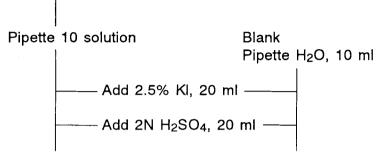
h) 2.5% KI

Weigh 2.5 g KI, dissolve in 97.5 ml of distilled water.

i) 0.05N Na₂S₂O₃ solution

Sodium thiosulphate Na₂S₂O_{3.5}H₂O, 13 g.

Make up to 1 litre with decarbonated H₂O


j) 0.005N Na₂S₂O₃

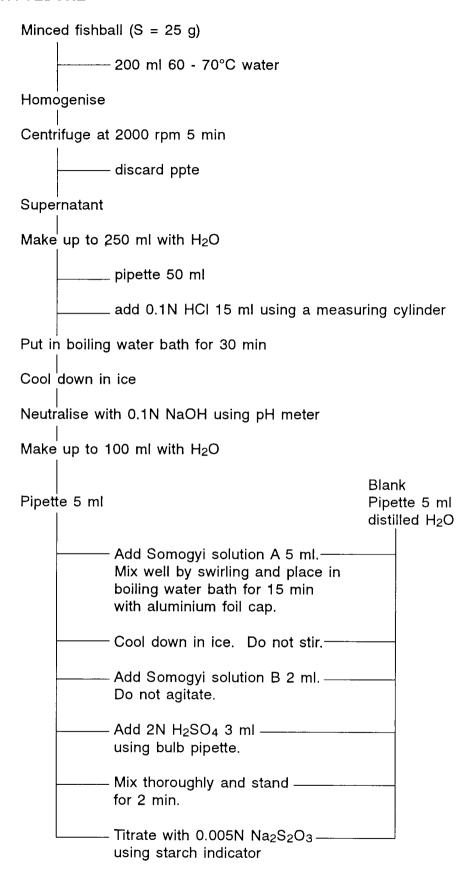
Dilute 100 ml of 0.05N Na₂S₂O₃ to 1 litre.

DETERMINATION OF FACTOR (F) OF 0.05N Na₂S₂O₃

Weigh about 1.5 g dried KIO3 accurately

Make up to 500 ml with H2O in volumetric flask

Titrate with 0.05N Na₂S₂O₃ with starch indicator


Factor, F = wt. of KIO₃ ×
$$\frac{10}{500}$$
 × $\frac{1}{0.0017835}$ × $\frac{1}{(B - A)}$

0.0017835 : conversion factor of 1 ml 0.05N Na₂S₂O₃ to KIO3 (g)

A: titration volume of KIO₃ solution (ml)

B: titration volume of blank (ml)

PROCEDURE

CALCULATION

Sucrose (%) = 0.0001449 (B - A) F ×
$$\frac{100}{5}$$
 × $\frac{250}{50}$ × 0.95 × $\frac{1}{S}$ × 100 = 13.7655 (B - A) F × $\frac{1}{S}$

where 0.0001449: 1 ml $0.005N Na_2S_2O_3 = 0.0001449$ g glucose

A : Sample titration volume (ml)

B : Blank titration volume (ml)

F : Correction factor of Na₂S₂O₃

S : Sample weight

0.95 : Conversion factor of glucose to sucrose

REFERENCES

David Pearson. The chemical analysis of food. 7th Ed: 128.

Official methods of analysis of the Association of Official Analytical Chemists. 13th Ed. 1980:226, 14.114(d)

877, 50.037, 50.038

515, 31.052, 31.053