SEAFDECINSTITUTIONAL REPOSITORY
    • English
    • ไทย
    • 日本語
    • Bahasa Indonesia
    • Bahasa Melayu
    • Burmese
    • Filipino
    • Khmer
    • Lao
    • Tiếng Việt
  • English 
    • English
    • ไทย
    • 日本語
    • Bahasa Indonesia
    • Bahasa Melayu
    • Burmese
    • Filipino
    • Khmer
    • Lao
    • Tiếng Việt
  • Login
View Item 
  •   SEAFDEC Institutional Repository (SIR)
  • 03 SEAFDEC External Publications
  • Journal Articles, Conference Papers and Book Chapters by SEAFDEC Staff
  • Journal Articles
  • AQD Journal Articles
  • View Item
  •   SEAFDEC Institutional Repository (SIR)
  • 03 SEAFDEC External Publications
  • Journal Articles, Conference Papers and Book Chapters by SEAFDEC Staff
  • Journal Articles
  • AQD Journal Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Why are Halophytophthora species well adapted to mangrove habitats?

Thumbnail
View/Open
Request this document
Date
2000
Author
Leaño, Eduardo M.
Jones, E. B. G.
Vrijmoed, L. L. P.
Page views
115
Metadata
Show full item record

Share 
 
Abstract
Halophytophthora species are commonly isolated from fallen mangrove leaves from early to late stages of decay. In this study we show that these organisms are well adpted to mangrove habitats as they have a wide tolerance to varying levels of pH, salinity and temperature. They also produce, abundant zoospores, and are chemotactically attracted to decaying mangrove leaves, and can readily attach to suitable substrata. In general, the four tested isolates (H. vesicula, H. avicennae, H. kandeliae and H. bahamensis) grew at pH 6-9, with maximum growth recorded at neutral pH. Vegetative growth and sporulation were observed over a wide range of salinities (from freshwater to marine) and temperatures, although optimum requirements varied from species to species. Zoospores of Halophytophthora spp. were chemotactically attracted to mangrove leaf-extracts and some other compounds that are common to the surrounding environment. The zoospores attached and germinated on both artificial (glass coverslips and polycarbonate membranes) and natural (mangrove leaves) substrata. Scanning electron micrographs show that newly attached zoospores, cysts, and germinating cystospores of H. vesicula produced fibrillar adhesive mucilage for attachement as was evident by debris sticking to their tips. More adhesive mucilage was produced by encysted and germinating cystospores on natural as compared to artificial substrata. Cystospores and germlings of H. vesicula and H. avicennae were also found to attach firmly to a perspex disc even after being subjected to a high shear stress of 3.19 Newton per square meter (Nm-2). Enzyme treatment and staining of attached cystospores indicate that the adhesive produced is composed of acidic polysaccharide with α-1, 4 linkages, and with either sulphate or phosphate functional groups. Once the cystospores were attached to the substratum, they could not be readily dislodged, and successful germination and colonization followed.
URI
http://hdl.handle.net/10862/1875
Suggested Citation
Leaño, E. M., Jones, E. B. G., & Vrijmoed, L. L. P. (2000). Why are Halophytophthora species well adapted to mangrove habitats? Fungal Diversity, 5, 131-151.
Subject
spores ASFA; Halophytophthora spp.; Physiological growth requirements; Spore attachment; Zoospore chemotaxis
Collections
  • AQD Journal Articles [1178]

© SEAFDEC 2023
Contact Us
 

 

Browse

All of SIRCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics
Related Links
SEAFDEC/TD IRSEAFDEC/AQD IRSEAFDEC/MFRDMD IRSEAFDEC/IFRDMD IR

© SEAFDEC 2023
Contact Us