SEAFDECINSTITUTIONAL REPOSITORY
    • English
    • ไทย
    • 日本語
    • Bahasa Indonesia
    • Bahasa Melayu
    • Burmese
    • Filipino
    • Khmer
    • Lao
    • Tiếng Việt
  • English 
    • English
    • ไทย
    • 日本語
    • Bahasa Indonesia
    • Bahasa Melayu
    • Burmese
    • Filipino
    • Khmer
    • Lao
    • Tiếng Việt
  • Login
View Item 
  •   SEAFDEC Institutional Repository (SIR)
  • 03 SEAFDEC External Publications
  • Journal Articles, Conference Papers and Book Chapters by SEAFDEC Staff
  • Journal Articles
  • AQD Journal Articles
  • View Item
  •   SEAFDEC Institutional Repository (SIR)
  • 03 SEAFDEC External Publications
  • Journal Articles, Conference Papers and Book Chapters by SEAFDEC Staff
  • Journal Articles
  • AQD Journal Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Respiratory vasculatures of the intertidal air-breathing eel goby, Odontamblyopus lacepedii (Gobiidae: Amblyopinae)

Thumbnail
Associated URL
naosite.lb.nagasaki-u.ac.jp
Date
2008
Author
Gonzales, Tomas T.
Masaya, Katoh
Ishimatsu, Atsushi
Page views
159
Metadata
Show full item record

Cited times in Scopus



Share 
 
Abstract
Lacking a propensity to emerge over the mud surface, the eel goby, Odontamblyopus lacepedii, survives low tide periods by continuously breathing air in burrows filled with hypoxic water. As with most marine air-breathing fishes, O. lacepedii does not possess an accessory air-breathing organ, but holds air in the buccal-opercular cavity. The present study aimed to clarify how the respiratory vasculature has been modified in this facultative air-breathing fish. Results showed that the gills apparently lacked structural modifications for air breathing, whereas the inner epithelia of the opercula were richly vascularized. Comparison with two sympatric gobies revealed that the density of blood capillaries within 10?m from the inner opercular epithelial surface in O. lacepedii (14.5 ± 3.0 capillaries mm-1; mean ± s.d., n = 3) was significantly higher than in the aquatic non-air-breathing Acanthogobius hasta (0.0 ± 0.0) but significantly lower than in the amphibious air-breathing mudskipper, Periophthalmus modestus (59.1 ± 8.5). The opercular capillary bed was supplied predominantly by the 1st efferent branchial arteries (EBA1) and drained by the opercular veins, which open into the anterior cardinal vein. Deep invaginations at the distal end of the EBA1 and the junction with EBA2 are suggestive of blood flow regulatory sites during breath-holding and apnoeic periods. It remains to be investigated how blood flow through the gills is maintained during breath holding when the buccal–opercular cavity is filled with air.
URI
http://hdl.handle.net/10862/2077
Suggested Citation
Gonzales, T. T., Masaya, K., & Ishimatsu, A. (2008). Respiratory vasculatures of the intertidal air-breathing eel goby, Odontamblyopus lacepedii (Gobiidae: Amblyopinae). Environmental Biology of Fishes, 82(4), 341-351.
DOI
10.1007/s10641-007-9295-5
Subject
blood vessels ASFA; capillarity ASFA; circulatory system ASFA; gas exchange ASFA; gills ASFA; hypoxia ASFA; respiratory system ASFA; Acanthogobius hasta; Odontamblyopus lacepedii; Periophthalmus modestus
Collections
  • AQD Journal Articles [1178]

© SEAFDEC 2023
Contact Us
 

 

Browse

All of SIRCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics
Related Links
SEAFDEC/TD IRSEAFDEC/AQD IRSEAFDEC/MFRDMD IRSEAFDEC/IFRDMD IR

© SEAFDEC 2023
Contact Us
 

 

EXTERNAL LINKS DISCLAIMER

This link is being provided as a convenience and for informational purposes only. SEAFDEC bears no responsibility for the accuracy, legality or content of the external site or for that of subsequent links. Contact the external site for answers to questions regarding its content.

If you come across any external links that don't work, we would be grateful if you could report them to the repository administrators.

Click DOWNLOAD to open/view the file.

Download